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A condition is formulated which is the generalization of the fracture variational 

principle in piezoelectric media. In some cases such a representation of the frac- 

ture condition, which permits the determination of crack development in a piezo- 

electric material, turns out to be preferable to the analogous condition obtained 

in Cl]. 
The problem of a disc-shaped crack developing on the boundary between a 

piezoelectric ceramic and an elastic isotropic conductor is considered as an 

illustration. 

1. VIrlrtfonrl principle of the fracture mrchrnio of pieao- 
electric media. The stress components uij (i, i = 1, 2, 3) and the components 

of the electric induction vector of a piezoelectric medium satisfy the equilibrium equa- 
tions and the Maxwell equation in the statistical case 

as.. 
-2 = ai3. 
axj 0, A= 

arj 0 (1.1) 

In Cartesian coordinates referred to the crystal-physics axes, for a piezoelectric medium 

C21 (1.2) 

Di = ekliEk/ f Ei,“E, (i, i, k, 1 = 1, 2, 3) 

Here C2h.l are the elastic moduli of the medium, eijr are the piezoelectric moduli, 

eigs are the adiabatic dielectric constants, ,Y:‘, are the electric field strength compon- 
ents, and Ekl are the strain tensor components. 

To derive the condition governing crack development in a piezoelectric material, let 
us examine a number of possible body states just as in [3, 41. Suppose there is no crack 
in the body in State 1, and external loads and an electrical potential Cp (Ek = @ids,) 
is specified on the body surface s , The stresses oijl, the displacement vector uilr the 
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potential ‘pr and the vector of electrical induction Djr correspond to this state. We 

examine a body in State 2 with the same external loads and potential on the surface S 
as in State 1, but with a crack X, on whose edges a load and potential are specified. 

The stresses oij.z, displacements uitr potential (~2 and induction l?,, correspond to this 
state. Finally, we examine a body in State 3 with a crack varying in length and shape 

with the loads and electric field of State 2. 
The change in energy during the passage from one State to another is [5] 

6E = - 6.4 + 6W (1.3) 

Here 6-4 is the work of the external forces and electric field and 6W is the change in 

internal energy of the body. 

From the energy conservation law there follows for the passage from State 2 into 
State 3 : 

0.4) 

Here u,, is the energy influx associated with the surface energy, and y is the intensity 

of the surface fracture energy. 
Using the relationship 

oijzeijr $_ EjzRjr ~z UijrEijZ + Ej,Dj, 

which is verified by substitution of fl. 2) and by (1.1). it is easy to show that the change 

in internal energy during passage from State I to State 2 is determined by the equation 

6]Vr_, = f \ $ (us - U1)dz = + S (Qij2 + Ql)(Ui2 - Uil)njdS + (I* 5, 

s-i-c 

1 ' 

2 a 
(%a+ cPi)(Djs - Djl)njdS 

s+c 

Here U is the density of the internal energy. The work of the surface forces and the 

field during passage from State 1 to State 2 can be written as 

~AI-2 = 1 Ql (at% - uil) n@ + S 91 (Djs - Djl) njdS + 
S S 

(1.6) 

Using (L3), (1.51, (1.6). we obtain the change in energy for passage from State 1 intO 
State 2 

The change in energy for the passage from State 1 to State 3 can be obtained in an an- 
alogous manner 

6E1-, = - + [ 5 (‘iijs + Gijl) [Uiz - Z&i1 + (Lfu 
1 q-6X 

6 (ui2 - q,)] a,dS + s (IPZ t- ~1) IDjz - Dj, + 6 (Djs - Djl)] njd,S) 
X-c&?; 
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Taking account of the equality 

6E,_, 7 6E,_, - 6&, 

the fundamental variational relationships governing the crack development condition 

in a piezoelectric medium 

’ S {7 -t + I(%2 + 3ijl) (Uis - Ilil) + (VZ + Cpl) (Dj, - Djl)] nj]dS=O (l* g, 
2: 

follows from (1.4), (1.7), (1.8). If there are no external load and field in State 1, then 
the condition (1.9) becomes 

(1.10) 

Here the positive direction of the normal to the boundary Z which is external to the 

medium is taken into account. 

2. Axiaymmetric crack on the boundary wtth a conductor, 
Formulation of tha problem. Let us consider an unbounded half-space@ > 0) 
of piezoelectric texture which has the symmetry 00 .rn. The texture is a polycrystalline 

aggregate consisting of monocrystals whose polarization vector is oriented by the exter- 

nal field. After removal of the field, the polarization vector retains its direction (pola- 

rized ceramic). 
The disc-shaped crack is located perpendicularly to the polarization direction,which 

is an axis of symmetry of infinite order for a piezoelectric ceramic on the interface 

(Z = 0) of the piezoelectric medium (z > 0) and of the elastic isotropic conductor 
(Z < 0). let us refer the space to a cylindrical r, 8, z coordinate system so that the 

z -axis coincides with the axis of symmetry. 
The edges of the crack of radius o are loaded by internal pressure o,, = (TO (r) 

which is symmetrical relative to the z -axis. Taking account of the symmetry of the 

load and the properties of the piezoelectric texture under consideration, the equations 

of the electrical elasticity problem in the r’, 6, z coordinate system are [2, 61 (z > 0) : 

‘%&+ +a+() 

Here o,.,+, or:+? olz+ are the stress tensor components of the piezoelectric medium, 
and D,., D, are components of the electrical induction vector. 

let us select the strain and electric field components as independent variables, and by 
using the matrix form of writing, let us represent (1.2) as 
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Ej = ?!!&+i?!$ , D1 = D,, D, = 0 

D, = D,, El =- E,,, E, = 0, E, = Ez 

Here u,.+, IL,+ are the displacement vector components in the case of axisymmetric 

strain of the piezoelectric medium. The form of the matrices of the elastic constants 
CijE (i, j z 1, 2, . . ., S), the piezoelectric moduli eik(i 7 1, 2, . . ., 6; k= 1, 
2, 3) and the dielectric constants aklS (k, I = 1, 2, 3) is presented in [6] for the 

piezoelectric texture cc - 172 (see also [ 11). 
Let us introduce the electric potential cp 

E,=$ E,= 2 

On the basis of (2.2) we obtain relationships connecting the stress and the electric induc- 

tion vector components to the strain and potential for axisymmetric strain of the medium 

(2.3) 

Substituting (2.3) into (2. l), we obtain the fundamental equations to investigate the 
axisvmmetric strain of a piezoelecaic medium (2.4) 

CE 
11 ( 

a~+fa$-$)+cfia~+(c~+C~)~- (f31+plsj~=0 

@ ayz+ I ; “;;)+&$? 
( 41 dr2 

+(c;_rcrJ_c~a?-f+ 

e15(s + fz) -e33g = 0 

For an isotropic conducting medium (z < 0) we have 

o;r = (A + 2EL) (2.5) 
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Here %-, %-, ~zz-, oee- are the stress tensor components in an isotropic conductor 

which satisfy (2. l), u,.-, u,- are the displacement vector components in the case of 

axisymmetric strain of an isotropic medium, and ?L, p are hame coefficients. 
The following conditions 

ozr+ (F, 0) = oz._- (I., o), o,.z+ (r-, 0) -~~= oT,,- (F, o), ‘p = 0; 0 < r <x, (2.6) 

ozzf (r, 0) = - ~0 (r), CT,,+ (r, 0) = 0; O< r<a (2.7) 

U,+ (r, 0) = U,- (r’, 0), U,+ (F, 0) = U,- (F, 0); r> n 
(2.8) 

must be satisfied in an investigation of the axisymmetric strain of a disc-shaped crack 
on the flat interface z -_ (1 between two media. 

Moreover, u,+ zzz t&f = u,- E uz- = cp z= 0, R=l/r’!+z2+ co 

3. Syrtem of dual integral equations. The solution of the system (2.4) 

will be sought by using the Hankel integral transform 

u,’ (F, z) = f u (2, E) Jr (jr) dS, uz+ (r, z) = r v (z, E) JO (5F) dt (3.1) 
0 0 

cP(r, 2) = f@(? t)J,(&)dE 
0 

Substituting (3.1) into (2.4), we obtain a system of ordinary differential equations to 

determine the functions U, I/, @. Let us write particular solutions of this system for 
z > 0 which satisfy the conditions at infinity as 

u _ ae-k@, T/’ z fje-krz, @I q = ye-k?2 

Here k are roots with positive real part for the characteristic equation 

det 11 aij 11 = 0 (3.2) 

a,, = c4,,*k2 - cllE, aI2 : - u21 z (c13E -+- c44E) k 

al3 = a31 
__ - 

(e31 -t 4 k, a22 q = c33 Ek.2 _ C44E 

a23 ~- - a32 ~~ - e,,k2 -I r 15, e us3 CL &33 Sk2 _ ,cllS 

An analysis of (3.2) shows that this equation has two real roots -& I<, and four complex 
conjugate roots + 6 & iw (kr, 6, - W> 0) for known piezoceramics. The constants 
U(k), p (k), 7 (k) which are the solution of the homogeneous system with the matrix 

(3.2) are determined from the formulas 

0: = a12a2:1 - a13az2, p = - a11%3- a1&13, r = ~11%2 + h2' 

Therefore, the functions U, V, Q can be represented as 
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a1 = a(W7 PI = P(b), r1= r(Ic,), a,, + '322 = a(6 + iw) 

IL + ii& = P(S + io), rzl+ irs2 = ~(6 + h) 

Taking account of (3.1) and (3.3), we obtain the following expressions for the displace- 

ment and potential components : 

u,+ (r, 2) = 5 [alAl (E) +I:* + (%I& (E) - a&, (E)) e-Qz cos co& + (3.4) 

(a,,R1 (Q ‘;- a,& (E)) e-s$z sin o&l JI @) 6 

u,+ (r, 2) = [ [/31Al (Q e-@ + (&IRI (E) - P&I(E)) &Z COS ($2 + 

(p& (E)“+ lj& (E)) e+Z sin &I Jo (Er) @ 

cp (r, 2) = r [rIA, (EJ ech‘lzz + (rzLR1 (E) - rs2C1 (E)) &z cm dz + 

(r& ii) + yzIC, (E)) @<‘sin &I JO (54 dE 

On the basis of (2.3). (3,l) and (3.4), we find 

u,+ (r, 0) = [ [%A, (B + %,I& (9 - Z&I (51 JI (59 dE 
0 

(3.5) 

where we have introduced the notation 

ml - - e15n - CUE (b% + PI) 

mz = e15v21 - CUE (k, - (%2 + &) 

m3 = e15y2, - ~2 @a,, +- a321 + Bz2> 

We represent the solution of the equilibrium equations (2.1) for z < 0 as 
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Here 

4, Solution of the ryctrm of dual 8quLtlons. Ifthe auxiliary func- 
tions p (i) and 4 (t) are introduced by using the relationships 

%A, (E) -I 6&l (E) = rz2 S p (tf sin Et dt (4.1) 
0 

6,& 6) -f- &B,. (E) = rz”, i y (t) cos Et clt 
0 

then by taking account of the values of the integrals n] 

a? 

s 
i 

0, t<r 

JO (%) sin Et dg = 1 

0 v-2 t 
t>r 

m 

1 

i 

s 
’ J,(B)cos~td~= r;’ 

t<r 
t 

0 
-- 

r rJf/t2--2* 

t>r 

it can be shown that (3.10). (3.11) are satisfied identically. Substituting (4.1) into 
(3.8). (3.9). and taking into account that p] 

i JO@) cos@dli,-_ 
1 

I/&T 7 tir 
0 0, t’> r 

m 
t 

s 
J1 (@) sin Et @, = ’ drz’ 

t<r 

0 0, t>r 

we obtain the following equalities 
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Integrating (4.2), we obtain a system of two generalized Abel integral equations, say,for 
the case o. (T-) = o0 =: const 

Applying the operator 

to (4.3) and changing the order of integration according to the Dirichlet formula,we find 
I 

Combining the integrals in the right side of (4.5) and differentiating this equality with 
respect to t, we obtain 

(4.6) 

It can be shown in an analogous manner that (4.4) after appropriate transformations, 

becomes 

(4.7) 

Setting 4 (- T) = q (7) and P (-- T) = - p (T), then (4.6) (4.7) can be written 
as a system of singular integral equations with Cauchy kernels 

(4.8) 

(, (q rz - E + \; $g! 
‘n 

(4.9) 

Multiplying (4.8) by i i g, and adding to (4.9), we obtain a single integral equation 

f(L) =- q(t) -I- d-p(t), g = ggl, g22R12 ‘12 
g1= - 

i ) g11:21 

We note that for real-piezoceramics and elastic media, say [l] 

,.“C gzl >> 0, <, k1 i fh > 0, R>l 

Following [8], let us introduce the function 
I, 

F (-‘) & \ E 
t c, 

for the solution of (4. lo), which is analytic in a plane with a slit along the segment 
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- (r _< I < a of the real axis. Then 

f (0 = F+ (t) - F- (t) (4.11) 

and (4.10) is equivalent to a Riemann boundary value problem 

F+(t)- (s;)F-(t)=;--&$t (4.12) 

Let us determine the solution which remains bounded near the ends rf a and let us take 

the canonical function in the form [8] 

X(z) = (gYX, x = &In% 

Then the genral solution of the boundary value plroblem (4.12) which satisfies the condi- 

tion F (m) = 0 is given by the formula 

F(z)= ;$$s 
idot dt 

gdf (t) (t - 2) 
--a 

(4.13) 

Here X+(t) is the value of X (z) on the upper edge of the slit. Evaluating the integral 

in (4.13) and using (4.11). we find 

F(z)=~$z+(~=-- ;i2:) X(z) (4.14) 

f(1) = 2 
Jt(#--l) ( 

i ztt - s 2xa) X+ lt) 

Separating real and imaginary parts in (4.14). we obtain 

Q(t) = - -5 n gzz :=_i [tsin(xInf$) +2xacos(xIn~~)] 

p(t) = $ gzz $E& [t cos (x In s) - 2xa sin (z In sf)] 
\ 

Using these latter relationships, we can determine all the strain, stress and electric field 

components in the neighborhood of the disc-shaped crack. In particular, we obtain for the 

displacement of the edges of the crack and the normal stresses on the continuation of the 

Let us use condition (1. iO), which becomes in the case under consideration 
a a 

(4.15) 

in order to determine the magnitude of the critical load acting on the edges of a disc 
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crack. Inverting the order of integration in (4.15), we obtain 
a 

fy = $;-p(t)tdt 

It can be shown that 
0 

a 

s 'p(t)tdt= $xa3(1 +4X2) 

0 

Then the value of the critical load applied to the crack edges is 

1. Kudriavtsev, B.A., Parton, V. Z. and Rakitin, V.I., Fracture me- 

chanics of piezoelectric materials. Rectilinear tunnel crack on the boundary with 
a conductor. PMM Vol.39, Np 1, 1975. 

2. 
3. 

Physical Acoustics, ed. by W. P. Mason, Vol. 1, Academic Press, N. Y.-London, 1964. 

Buekner. H. F., The propagation of cracks and the energy of elastic deformation. 

Trans. ASME, Vol. 80, Np 6, 1958. 

4. Morozov, E. M., Variation principles in fracture mechanics. Dokl. Akad. Nauk 

SSSR, Vol.184, NQ 6, 1969. 

5. Sedov, L. I., Mechanics of Continuous Media. “Nat&a”, Moscow, 1973. 

6. Nye. J. F. , Physical Properties of Crystals. Clarendon Press, Oxford, 1964. 

7. Tables of Integral Transforms. SMB, Vol.2, “Nat&a”, Moscow, 1970. 

8. Gakhov, F. D., Boundary Value Problems. (English translation), Pergamon Press, 

00 = v Tm 
up. (1 + 4x2) 

REFERENCES 

Book Np10067. 1966. 
Translated by M.D. F. 

ON THE ESCAPE 

UDC 62 - 50 

PROBLEM WITH CONSTRAINTS OP DIFFeRENT TYPES 

PMM Vol. 39, No 2, 1975, pp. 363-366 

A. V. MEZENTSEV 

(Moscow) 
(Received December 14, 1973) 

We examine a linear escape problem in which the pursuing player’s control is 
constrained in energy, while that of the escaping player, in absolute value. The 
game’s termination set is defined as the equality of the players’ geometric coor- 
dinates. We have obtained sufficient conditions for the pssibility of evasion from 
contact from any point of the phase space,not belonging to the game’s termination set, 
and sufficient conditions for the existence of an open set in the phase space.from 
any point of which the game can be terminated in finite time. 

Suppose that in the space fin (n > 2) the motion of the pursuing vector 5 and of the 
escaping vector y is described by the equations 


